Grr Obner Bases in Type Theory

نویسندگان

  • Thierry Coquand
  • Henrik Persson
چکیده

We describe how the theory of Grr obner bases, an important part of computational algebra, can be developed within Martin-LL of's type theory. In particular, we aim for an integrated development of the algorithms for computing Grr obner bases: we want to prove, constructively in type theory, the existence of Grr obner bases and from such proofs extract the algorithms. Our main contribution is a reformulation of the standard theory of Grr obner bases which uses generalised inductive deenitions. We isolate the main non{constructive part, a minimal bad sequence argument, and use the open induction principle Rao88,Coq92] to interpret it by induction. This leads to short constructive proofs of Dickson's lemma and Hilbert's basis theorem, which are used to give an integrated development of Buchberger's algorithm. An important point of this work is that the elegance and brevity of the original proofs are maintained while the new proofs also have a direct constructive content. In the appendix we present a computer formalisation of Dickson's lemma and an abstract existence proof of Grr obner bases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Grr Obner Bases. a Computational and Theoretical Tool

Overview These notes consists of ve lectures. Each lecture covers the material that I will present with fuller details and exercises. I have also included some material in appendices which the reader might nd interesting but which I will not have time to cover in my lectures. Lecture 1 introduces both linear Grr obner bases and Grr obner bases for algebras. Lecture 2 surveys some of the basis a...

متن کامل

Grr Obner Bases for Polynomial Ideals over Commutative Noetherian Rings and Related Results ?

We present a completion-like procedure for constructing weak and strong Grr obner bases for polynomial ideals over commutative Noetherian rings with unit. This generalizes all the known algorithms for computing Grr obner bases for polynomial ideals over various diierent coeecient domains. The coeecient domain is incorporated using constraints. Constraints allow us to describe an optimized proce...

متن کامل

Factor-SAGBI Bases: a Tool for Computations in Subalgebras of Factor Algebras

We introduce canonical bases for subalgebras of quotients of the commutative and non-commutative polynomial ring. A more complete exposition can be found in 4]. Canonical bases for subalgebras of the commutative polynomial ring were introduced by Kapur and Madlener (see 2]), and independently by Robbiano and Sweedler ((5]). Some notes on the non-commutative case can be found in 3]. Using the la...

متن کامل

Xideal Grr Obner Bases for Exterior Algebra

1 Description The method of Grr obner bases in commutative polynomial rings introduced by Buchberger (e.g. 1]) is a well-known and very important tool in polynomial ideal theory, for example in solving the ideal membership problem. XIDEAL extends the method to exterior algebras using algorithms from 2]. There are two main departures from the commutative polynomial case. First, owing to the non-...

متن کامل

On Some Basic Applications of Grr Obner Bases in Non-commutative Polynomial Rings

In this paper we generalize some basic applications of Grr obner bases in commutative polynomial rings to the non-commutative case. We deene a non-commutative elimination order. Methods of nding the intersection of two ideals are given. If both the ideals are monomial we deduce a nitely written basis for their intersection. We nd the kernel of a homomorphism, and decide membership of the image....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998